A Note on Self-bilinear Maps
نویسندگان
چکیده
Cryptographic protocols depend on the hardness of some computational problems for their security. Joux briefly summarized known relations between assumptions related bilinear map in a sense that if one problem can be solved easily, then another problem can be solved within a polynomial time [6]. In this paper, we investigate additional relations between them. Firstly, we show that the computational Diffie-Hellman assumption implies the bilinear Diffie-Hellman assumption or the general inversion assumption. Secondly, we show that a cryptographic useful self-bilinear map does not exist. If a self-bilinear map exists, it might be used as a building block for several cryptographic applications such as a multilinear map. As a corollary, we show that a fixed inversion of a bilinear map with homomorphic property is impossible. Finally, we remark that a self-bilinear map proposed in [7] is not essentially self-bilinear.
منابع مشابه
On continuous cohomology of locally compact Abelian groups and bilinear maps
Let $A$ be an abelian topological group and $B$ a trivial topological $A$-module. In this paper we define the second bilinear cohomology with a trivial coefficient. We show that every abelian group can be embedded in a central extension of abelian groups with bilinear cocycle. Also we show that in the category of locally compact abelian groups a central extension with a continuous section can b...
متن کاملA Note on Bilinear Estimates and Regularity of Flow Maps for Nonlinear Dispersive Equations
Explicit counterexamples to bilinear estimates related to the Benjamin-Ono equation in the periodic setting are calculated for functions of zero mean value. As a consequence, certain bilinear estimates fail to hold in spite of the analyticity of the flow map. The latter has been shown recently by L. Molinet.
متن کاملArens regularity of bilinear maps and Banach modules actions
Let $X$, $Y$ and $Z$ be Banach spaces and $f:Xtimes Y longrightarrow Z$ a bounded bilinear map. In this paper we study the relation between Arens regularity of $f$ and the reflexivity of $Y$. We also give some conditions under which the Arens regularity of a Banach algebra $A$ implies the Arens regularity of certain Banach right module action of $A$ .
متن کاملComparing 511 keV Attenuation Maps Obtained from Different Energy Mapping Methods for CT Based Attenuation Correction of PET Data
Introduction: The advent of dual-modality PET/CT scanners has revolutionized clinical oncology by improving lesion localization and facilitating treatment planning for radiotherapy. In addition, the use of CT images for CT-based attenuation correction (CTAC) decreases the overall scanning time and creates a noise-free attenuation map (6map). CTAC methods include scaling, s...
متن کاملA Note on Spectrum Preserving Additive Maps on C*-Algebras
Mathieu and Ruddy proved that if be a unital spectral isometry from a unital C*-algebra Aonto a unital type I C*-algebra B whose primitive ideal space is Hausdorff and totallydisconnected, then is Jordan isomorphism. The aim of this note is to show that if be asurjective spectrum preserving additive map, then is a Jordan isomorphism without the extraassumption totally disconnected.
متن کامل